Definition 1. Polynomial: A polynomial has the form

 $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} \cdots a_2 x^2 + a_1 x + a_0,$

where

- 1. The highest exponent $n \ge 0$ is called the **degree**.
- 2. The constants $a_n, a_{n-1}, \dots, a_1, a_0$ are called the **coefficients** of the polynomial.
- 3. a_n is called the **leading coefficient**.
- 4. The <u>monomials</u> $a_n x^n, a_{n-1} x^{n-1}, \dots, a_1 x, a_0$ are called the <u>terms</u> of the polynomial.
- 5. $a_n x^n$ is called the **leading term**.
- 6. a_0 is called the <u>constant term</u>.

Note 1. 1. The only polynomial that has no degree is the Zero Polynomial.

2. The constant polynomial has degree 0.

Definition 2. <u>Standard form:</u> When the exponents of a polynomial decrease from left to right, then the polynomial is said to be in standard form.

Example 1.

$$9 - 8m^3 + 4m + m^7$$
,

is a polynomial whose standard form is

$$m^7 - 8m^3 + 4m + 9.$$

The degree of this polynomial is 7, the leading coefficient is 1, the constant term is 9, and the leading term is m^7 .

Definition 3. <u>Adding and Subtracting Polynomials:</u> To add polynomials: Group like terms and then combine them. To subtract two polynomials, first change the sign of each term in the second then group like terms and finally combine like terms.

Example 2. Find the sum of the polynomials: $-4x^3 + 5x^2 + 7x - 2$ and $6x^3 - 2x^2 - 8x - 5$. **Solution:**

$$(-4x^3 + 5x^2 + 7x - 2) + (6x^3 - 2x^2 - 8x - 5)$$

= $(-4x^3 + 6x^3) + (5x^2 - 2x^2) + (7x - 8x) + (-2 - 5)$
= $2x^3 + 3x^2 - x - 7$.

Example 3. Find the difference of the polynomials: $-4x^3 + 5x^2 + 7x - 2$ and $6x^3 - 2x^2 - 8x - 5$. **Solution:**

$$\begin{aligned} (-4x^3 + 5x^2 + 7x - 2) - (6x^3 - 2x^2 - 8x - 5) \\ &= (-4x^3 + 5x^2 + 7x - 2) + (-6x^3 + 2x^2 + 8x + 5) \quad (Change signs of each term in the second polynomial) \\ &= (-4x^3 - 6x^3) + (5x^2 + 2x^2) + (7x + 8x) + (-2 + 5) \\ &= -10x^3 + 7x^2 + 15x + 3. \end{aligned}$$

Definition 4. Multiplying Polynomials: To multiply two polynomials, multiply each term of one polynomial by every term of the other polynomial and combine like terms.

Example 4. Multiply: $4x^2 + 3x$ and $x^2 + 2x - 3$. Solution:

$$\begin{aligned} (4x^2 - 3x)(x^2 + 2x - 3) \\ &= 4x^2(x^2 + 2x - 3) - 3x(x^2 + 2x - 3) \\ &= 4x^2(x^2) + 4x^2(2x) + 4x^2(-3) - 3x(x^2) - 3x(2x) - 3x(-3) \\ &= 4x^4 + 8x^3 - 12x^2 - 3x^3 - 6x^2 + 9x \\ &= 4x^4 + (8x^3 - 3x^3) + (-12x^2 - 6x^2) + 9x \\ &= 4x^4 + 5x^3 - 18x^2 + 9x. \end{aligned}$$

Definition 5. FOIL Method for (A+B)(C+D):

$$(A+B)(C+D) = A \stackrel{F}{\cdot} C + A \stackrel{O}{\cdot} D + B \stackrel{I}{\cdot} C + B \stackrel{L}{\cdot} D$$

Example 5. Multiply: x + 2 and x - 7. Solution:

$$(x+2)(x-7) = x \cdot x + x \cdot (-7) + 2 \cdot x + 2 \cdot (-7) = x^2 - 7x + 2x - 14 = x^2 - 5x - 14.$$

Definition 6. Important Products to Remember:

1. $A^2 - B^2 = (A + B)(A - B)$ Difference of squares

2.
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$
 Difference of cubes

3.
$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$
 Sum of cubes

4. $A^2 - 2AB + B^2 = (A - B)^2$ Perfect square, negative middle term

5. $A^2 + 2AB + B^2 = (A + B)^2$ Perfect square, positive middle term